
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Piotr Sarna

Student no. 321169

Bypassing the limit of RAM capacity

in distributed �le system LizardFS

Master's thesis

in COMPUTER SCIENCE

Supervisor:

dr Janina Mincer-Daszkiewicz
Institute of Informatics

June 2016



Supervisor's statement

Hereby I con�rm that the presented thesis was prepared under my supervision and

that it ful�ls the requirements for the degree of Master of Computer Science.

Date Supervisor's signature

Author's statement

Hereby I declare that the presented thesis was prepared by me and none of its

contents was obtained by means that are against the law. The thesis has never before

been a subject of any procedure of obtaining an aca- demic degree. Moreover, I declare

that the present version of the thesis is identical to the attached electronic version.

Date Author's signature



Abstract

Distributed �le systems with a centralized metadata server are constrained by many bound-
aries, one of which is limited RAM capacity. This particular issue can be potentially bypassed
with the help of fast solid-state disks. My research will be based upon creating a library of al-
ternative memory allocation methods, which would utilize underlying drive (e.g. SSD, ZRAM)
for data storage, using RAM only as cache. The next step would be to implement the library
as primary memory allocator in LizardFS � an open-source, distributed �le system. Results
could then be veri�ed and benchmarked on real-life installations.

Keywords

distributed, �le system, storage, memory, optimization, SSD, ZRAM, LizardFS, library, C++

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Computer Science

Subject classi�cation

Software and its engineering
Software organization and properties

Contextual software domains
Operating systems

Memory management
Allocation / deallocation strategies

Information systems
Information storage systems

Storage architectures
Distributed storage

Tytuª pracy w j¦zyku polskim

Obej±cie limitu pami¦ci RAM w rozproszonym systemie plików LizardFS





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1. Introduction to LizardFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. Resource consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3. Memory of the master server . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4. Existent memory optimizations . . . . . . . . . . . . . . . . . . . . . . 10

2. Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. Introduction to SSDAlloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Choice of programming language . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. Used libraries and portability . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1. Linux-speci�c headers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2. BerkeleyDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4. User-space memory management . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1. Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2. Performance of signal-based management . . . . . . . . . . . . . . . . 23

3.5. Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1. Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2. Runtime layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3. Storage layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Choice of storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1. HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2. Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3. Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2. Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4.2.3. Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. In-kernel compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2. Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3. Usage examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4. Compression algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.5. Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1. Price-oriented choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2. Performance-oriented choice . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5. Integration with LizardFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1. Build con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2. Code changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2. Con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4. Result sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4.1. without fsalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.2. single stream zram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.3. multiple stream zram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.4. HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.5. SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5. Combined results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6. In-kernel compressed memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.7. Pro�ling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.7.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3. Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A. LizardFS graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B. Contents of the attached CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4



Introduction

Global need of maintaining very large amounts of data is still increasing. The storage sector is
currently enjoying the bene�ts of having many independent distributed �le systems designed
to store petabytes of data safely and e�ciently. Unfortunately, these �le systems have their
own limitations � CPU and RAM usage, power consumption, network latencies, keeping
consistency of distributed data.

One of the interesting architectures is a "�le system with centralized metadata server".
Its huge advantage is not having to worry about metadata consistency, which is a non-trivial
problem to cope with. On the other hand, memory and CPU usage is centralized as well,
which leads to very high hardware requirements for large installations.

Some systems (e.g. LizardFS [13]) implement a policy of keeping all metadata in random-
access memory. By that means, as long as there is enough memory available, metadata
operations are performed quickly, without any need to use disk I/O. It is worth noting,
that metadata operations are very frequent on a POSIX-compliant �le system. The most
excessively used one is a lookup call, which is used to extract information about a �le (more
speci�cally, an inode) from its path. Ensuring that this operation is fast should be the primary
goal of a distributed �le system developer.

This performance-oriented policy has one big �aw, which is extremely high memory con-
sumption. An attempt to reduce RAM constraint without rewriting the whole application is
the main topic of this thesis.

Princeton University researchers, Anirudh Badam and Vivek S. Pai presented an interest-
ing idea on how to move the burden of dynamically allocated memory from RAM to solid-state
hard drives [1, 3]. The project is called SSDAlloc and its goal is to intercept the allocation
process and keep the data in designated SSD block device, using RAM only as temporary
cache for frequently used pages.

Solid-state drives are not the only reasonable way to store allocated data, though. Another
noteworthy idea is to take advantage of compressed RAM devices, e.g. ZRAM module [15]
available in Linux kernel.

The thesis contains documented implementation of a memory management library � fsal-
loc, designed to overload traditional malloc/new calls with ones that keep allocated data in the
database. The library was injected into distributed �le system LizardFS in order to compare
its performance and memory usage with and without fsalloc.

5



The thesis consists of 7 chapters:

1. Background � introduction to open-source distributed �le system LizardFS and its
memory management.

2. Motivations � introduction to SSDAlloc project and its summary.

3. Design and implementation � implementation details of fsalloc �memory management
library.

4. Choice of storage � review of storage back-ends that could be used by fsalloc.

5. Integration with LizardFS � steps performed to introduce fsalloc as a memory manager
for frequently used structures in LizardFS system.

6. Results � performance results of experiments carried out on production-ready instal-
lations.

7. Conclusions � comments regarding performance results and future development oppor-
tunities.

Electronic version of this thesis, implementation of fsalloc library and detailed performance
results are available on the attached CD.

6



Chapter 1

Background

Allocation library is not a fully standalone product � it is used along with an application
that bene�ts from its routines. In this particular case the application is a distributed �le
system cluster with high resource consumption � fsalloc is to be integrated with LizardFS
and tested in terms of both correctness and performance.

In order to properly understand the design decisions, approaches and other details, overall
description of LizardFS � background for the whole project � is presented in this chapter.

1.1. Introduction to LizardFS

LizardFS [13] is an open-source, distributed �le system. Project's goal is to deliver fault-
tolerant, highly available, scalable and POSIX-compliant alternative to other solutions. Source
code is freely available and can be found at https://github.com/lizardfs/lizardfs.

1.1.1. Architecture

Conceptually, LizardFS can be divided into 4 parts:

1. metadata server, which can be either of:

� master,

� shadow,

� metalogger,

2. chunkserver,

3. mount,

4. client-side extra features, namely:

� CGI web server,

� console administration tool.

Master is a centralized metadata management process. It holds all metadata present in
the system in RAM, which makes it a primary target for memory usage optimization. Clients
gather all needed information about �les from master before performing any reads/writes.
Chunkservers are managed from master server only � decisions on performing a replication
between chunkservers or getting rid of certain chunks are commissioned directly from master.

7

https://github.com/lizardfs/lizardfs


Shadow is an online copy of master server, ready to become promoted to master once a
failure occurs. Shadows are used in high-availability solutions and keep the same memory
structure as masters, so they are the target of RAM optimization as well.

Metalogger is an o�ine copy of system's metadata and is not memory-consuming, so it
will not be discussed further in this thesis.

Chunkserver is responsible for:

� keeping chunks of �les on internal storage,

� ensuring that all chunks hold valid information (via checksum calculation),

� sending and receiving �le data from clients.

All �les in the system are divided into chunks that are up to 64 MiB in size. Chunks are then
distributed over chunkservers in order to keep a safe number of copies and follow the rules of
georeplication. Each �le holds information on how many copies should be kept and on which
groups of chunkservers. This information as a whole is called a goal.

Mount represents the most important client-side feature. It enables users to create a mount-
point and use LizardFS transparently as a regular �le system.

On Linux, LizardFS is available through FUSE (Filesystem in Userspace) mechanism,
a widely known kernel driver which allows custom �le systems to be developed entirely in
userspace.

Additionally, LizardFS-speci�c functionalities are provided via a set of external binaries.
Examples:

� setting a goal (replication policy for �le's data),

� creating a snapshot (copy-on-write duplicate of a �le),

� managing user quotas.

In order to access �les, client contacts master for vital metadata information, and, if need
be, requests data directly from chunkservers. Figures A.1, A.2, A.3 included in appendix A
show how data and metadata �ows between servers on I/O operations.

Client-side extra features are created for convenience of LizardFS administrators. Var-
ious system statistics can be viewed via web browser thanks to CGI server. Maintenance
information can also be extracted directly from a command-line tool.

1.1.2. Resource consumption

Components of LizardFS have di�erent needs in terms of resources o�ered by the hardware.

Master server is both RAM and CPU sensitive. It occupies large amounts of memory,
since all system metadata is stored there. Processor time is spent on serving requests, re-
calculating various statistics and deciding whether chunks present in the system need to be
replicated/checked/deleted/moved. It is highly recommended to reserve a dedicated physical
machine for master server to run on, if possible.

8



Chunkserver is constrained by I/O throughput. It extensively performs read/write oper-
ations on storage. It is discouraged to share disks between chunkservers and other processes.

Mount and other client-side features are not considered resource-demanding.

In this thesis, attention will be focused on reducing master server's dependence on RAM
capacity, bearing in mind, that it must not be done at the expense of very high CPU overhead.

1.1.3. Memory of the master server

Metadata kept in master server is internally held as directory tree. Information about each
�le is kept in its inode, represented by fsnode structure, while paths (with semantics similar
to dentries) are stored in fsedge structure.

The fsnode contains various details of every �le, especially:

� inode id,

� creation time, access time, modi�cation time,

� ids of owner and group,

� goal,

� parent fsedge,

� child fsedges (if �le is a directory).

Structure's overall size can be rounded to 128 B.
Size of the fsedge structure is hard to predict, since its main component is �le name, which

is variable in size.
One more structure that highly a�ects memory usage is struct chunk, which holds metadata

of each data chunk. Mentioned metadata consists of chunk's location, its safety policies and
number of replicas present in the system.

All three structures are kept in hash tables. They create the most heavy pressure on
memory usage, since their number increases linearly as more �les appear in the installation.

In order to visualize importance of these structures, let us see in table 1.1 how much RAM
an installation would need to store fsnodes alone and all �le-related structures.

� of �les fsnode overhead all structures overhead

1 128 B 500B

1 000 128 KB 500 KB

1 000 000 128 MB 500 MB

100 000 000 12 GB 50 GB

1 000 000 000 128 GB 500 GB

Table 1.1: Average memory overhead of the master server

Overall RAM usage for LizardFS is 500 B per average �le. The extra usage is caused by
several factors, for example:

� data layer � i.e. chunks belonging to a �le,

9



� internal helper structures of LizardFS (caches, temporary bu�ers),

� additional �le properties � extended attributes (xattr), access control lists (ACL).

It must be clari�ed, that statistics above apply to an average �le on an average installation.
It is absolutely possible to drain a signi�cant amount of system resources with only few
�les. For instance, the assumed average �le has 1 name, which is about 16 characters long.
Extended attributes and access control lists are considered rare.

A good way to observe memory usage of a process is to create and browse its heap pro�le.
Heap pro�le is a visual representation of used memory with various statistics � the most
important one being percentage of heap used per function call. Pro�ling a heap requires
gathering internal allocation data of a process and is usually connected with overriding library
calls � malloc, mmap, brk, etc. As it happens, Google perf tools package [9] provides an
e�cient and handy heap pro�ler along with its �agship product � tcmalloc allocation library
[19]. Results of a pro�ling session executed on running LizardFS master server are presented
in appendix A.4. For clari�cation, most resource-consuming symbols are explained below.

_ZN6fsnodeC4Eh is a symbol for fsnode class constructor. It was responsible for claiming
the biggest part of the heap, so it is clearly the best candidate for optimization.

get16bit is a macro used for extracting 2-bytes values from binary �les and network. In
this case, it was used for loading edges (i.e. �le names) from disk.

chunk_malloc is used for allocating memory for chunk structure.

fs_loadnode is a function that handles reading fsnode de�nitions from binary �les and
deserializing them into objects that reside in RAM.

fs_loadedge behaves as above, but it handles �le names instead of fsnode de�nitions.

chunk_new is a constructor of chunk structure.

From description above it can be safely concluded, that removing overhead exerted by
fsnode, fsedge and chunk structures from LizardFS master server's memory will result in
bypassing its current RAM boundaries.

1.1.4. Existent memory optimizations

LizardFS implements several useful mechanisms for memory saving:

Size-aware types are used � int8_t, int16_t, uint32_t, etc. instead of regular int, long,
unsigned long long. This issue becomes vital when quantity of objects present in the system
reaches millions.
Example in listing 1.1 shows a casual de�nition of structure A and its memory-aware version
� struct compactA. While the �rst one can occupy, depending on the architecture, 32 bytes,
its compact variant occupies exactly 4 bytes. Beyond size-aware types, specifying bit�elds

10



(uint8_t is_valid : 1 ) can pack values smaller than 1 byte together in order to save even
more space.

Listing 1.1: Example of size-aware typed structure

struct A {

long long id;

int order;

int flags;

int is_valid;

int has_acl;

int has_xattr;

int is_redundant;

}

struct compact_A {

uint16_t id;

uint8_t order;

uint8_t flags : 4;

uint8_t is_valid : 1;

uint8_t has_acl : 1;

uint8_t has_xattr : 1;

uint8_t is_redundant : 1;

}

Fields in structures are ordered in a way that minimizes padding. If compact structure
shown in 1.1 would have been ordered like in listing 1.2, it would have occupied 6 bytes,
because, due to padding rules in C/C++, compiler would insert at least 1 empty byte between
order and id �elds, in order to ensure that 2 byte id �eld is properly aligned. Additionally,
a trailing 1 byte �eld would be added, because the whole structure is required to be aligned
as strictly as its most strict member. It is also noteworthy, that bit�elds speci�ed inside the
structure must be listed consecutively or they would not work as desired. Example struct
presented in listing 1.3 would occupy at least 8 bytes.

11



Listing 1.2: Example of �eld ordering in a structure

struct wrong_compactA {

uint8_t order;

// char transparent_padding_after_order [1];

uint16_t id;

uint8_t flags : 4;

uint8_t is_valid : 1;

uint8_t has_acl : 1;

uint8_t has_xattr : 1;

uint8_t is_redundant : 1;

// char transparent_trailing_padding [1];

}

Listing 1.3: Example of padding

struct wrong_compactA {

uint8_t flags : 4;

// bitfield supplemented to 8 bits

uint8_t order;

uint8_t is_valid : 1;

// bitfield supplemented to 8 bits

uint16_t id;

uint8_t has_acl : 1;

uint8_t has_xattr : 1;

uint8_t is_redundant : 1;

// bitfield supplemented to 8 bits

}

Additional properties that are relatively rare, are often kept in hash tables instead of
being inlined into every object. This is a very important design decision. If some properties
of a class apply to the minority of its objects, keeping a pointer to nearly always empty list
of these properties in every instance is a waste of space. What can be done instead, is to
store these properties in an external dictionary-like container, e.g. hash map. Then, with a
reasonably low CPU overhead for edge cases, total size of each structure could be reduced.

Smart data structures can lower unneeded memory consumption as well. Standard con-
tainers provided by STL (standard template library) often provide more functionalities than
necessary at the cost of bigger size. Instead of using popular std::vector (24 bytes in size for
x86/64 architecture), it is often better to directly allocate a memory region for object storage
� reducing RAM overhead to address size (8 bytes on 64 bit architectures) per instance.

One of notable examples of a smart data structure is �at set, or its more speci�c version
� �at map. Traditionally, ordered sets are implemented on the basis of balanced trees. Flat
ordered set, on the other hand, stores all its data in a continuous array. Naturally, choice of
underneath data structure a�ects the pessimistic time complexity of set operations, listed in
table 1.1.

12



Operation tree-based set �at set

�nd O(log n) O(log n)

insert O(log n) O(n)

remove O(log n) O(n)

Figure 1.1: Complexity for selected dictionary operations

Linear complexity of insert/remove operations on a �at set is a result of potential need
to shift nearly all array elements, in order to ensure it is still continuous after the process.
Finding an element can still be achieved in O(log n) time by applying binary search.

There is one big advantage of using a �at structure, though. Speci�cally, it is a lack of
need to use pointers. A perhaps surprising fact is that in some cases, switching to a �at
structure could bring pro�ts to both CPU and RAM load. First of all, continuous arrays, by
de�nition, provide high locality for memory access. Heap allocation based tree nodes may not
have this kind of feature. Secondly, space overhead per single element can be much smaller
for �at structures. A real life example is shown in listing 1.4.

Listing 1.4: Example of set elements

// sizeof(struct A) = 1

struct A {

char value;

}

// sizeof(struct tree_node) = 24

struct tree_node {

struct A value;

struct tree_node *lhs;

struct tree_node *rhs;

}

In this simple code snippet, a structure occupies only 1 byte of space, while its tree
node can occupy up to 24 bytes on 64 bit architecture � 16 because of two addresses, 1 for
structure itself and (wasted) 7 bytes of padding to ensure proper alignment. It results in
twenty-four-fold overhead for storing an ordered set of characters.

External allocation libraries like tcmalloc [19], jemalloc [11] can be applied to an existing
project. Most of them are based on the idea of per thread memory pools, in some ways similar
to slab allocator present in the Linux kernel. LizardFS o�ers an option to compile �le system
binaries already linked to tcmalloc library, turned o� by default. Some allocation libraries
can be preloaded in runtime, which can be achieved on Linux by setting LD_PRELOAD
environment variable to appropriate path before executing a program. All available allocation
libraries have their strong supporters and strong opponents, but the only way to see if it is
applicable for a project is to apply and test it thoroughly in terms of performance.

All methods above share one big disadvantage � they only slightly delay the moment when
master server runs out of memory.

One way of dealing with high memory usage is to move responsibility for storing metadata
to a database residing on persistent storage. It can be achieved by rewriting fair amount of

13



code in order to adapt the whole project to the new logic. The biggest disadvantage of this
solution is time � spent �rst on performing all the changes, and then on full regression tests,
since majority of system's code was rewritten. An interesting alternative method is presented
in next chapters of this thesis.

14



Chapter 2

Inspiration

The source of inspiration to create a new memory management library is a work of researchers
from Princeton University � SSDAlloc project [1, 3].

2.1. Introduction to SSDAlloc

SSDAlloc was designed to transparently extend random-access memory with slower, but more
capacious solid-state drives. The interesting aspect was to minimize the amount of code that
should be rewritten in order for the user application to work with new allocation system.
SSD drives have irrefutable advantage of being cheaper than RAM. With 1 terabyte storage
available for about $500, random-access memory could not be a competition. What is more,
modern SSD's are statistically only 4 times slower than RAM, which makes them perfectly
usable even in highly responsive applications.

2.1.1. Motivation

SSDAlloc targeted the popular need of performing a signi�cant change to a big project with-
out a necessity to rewrite large amounts of code. Simpli�ed table 2.1 shows how SSDAlloc
addresses this problem. Full chart can be found in publicly available documents regarding
SSDAlloc project [2].

Solution high performance persistence programming ease

Total application rewrite 3 3 7

Swapping to SSD 7 7 3

SSDAlloc 3 3 3

Table 2.1: Simpli�ed comparison of SSDAlloc and its alternatives

2.1.2. Keywords

� OPP � object-per-page
policy to store only 1 object per 1 system page, even if it is signi�cantly smaller than
the page size

� RAM Object Cache
frequently used allocated objects stored in random-access memory

15



� Page Bu�er
a �rst-in �rst-out style queue of pages currently mapped into RAM

2.1.3. Architecture

SSDAlloc works on three distinctive levels: application, runtime and storage.

Application level
The main goal of application level design was to be as transparent to the user as possible. It
was vital to ensure that memory allocated via SSDAlloc was similar to the one obtained by
malloc/new. Particularly, virtual addresses of SSD-allocated pages should be immutable.

The requirements were successfully achieved by implementing a simple user-space memory
manager.

Runtime level
Internally, SSDAlloc uses 2 important data structures: RAM Object Cache and Page Bu�er.

RAM Object Cache is used for storing frequently used objects and uses LRU algorithm
for enqueuing them. It also distinguishes clean and dirty objects. By a general rule, cached
object is clean until its data is modi�ed in any manner. Thanks to that mechanism, only dirty
objects need to be written back to storage, which can dramatically decrease the I/O load.
This feature is especially useful when working with solid-state drives, because each unneeded
write wears them down.

Page Bu�er is a container of active mapped pages. These pages are actually used by an
application to access allocated objects. Simple FIFO algorithm proven to be enough to ensure
su�cient performance. Practical experiments have shown that Page Bu�er capable of storing
8192 pages did not create a bottleneck either.

Page manager is responsible for serving memory allocation requests in user-space. Its
simpli�ed work�ow is the following.

1. Map a virtual page.

2. Protect a page from reading/writing.

3. Accessing memory will trigger a segmentation fault signal handler.

4. Run a custom handler.

5. Load needed data into memory in the handler.

6. Once page is not needed, free the page frame.

Mapping an anonymous page will reserve a virtual address, without using any physical
memory yet. Only after page is �lled with data from solid-state drive, it actually occupies
physical space. When page is no longer needed, Linux kernel can be advised to treat a page
as not needed. Linux behaviour on getting such advice is to immediately remove the page
from cache, so it no longer consumes resources.

16



There are potential problems to be considered with user-space memory management and
they will be addressed in subsection 3.4.1. Fortunately, many implementations of operating
systems based on UNIX (including Linux) are capable of dealing with these problems.

Storage level
Storage layer consists of 2 parts: address translator and log-structured object store.

Address translator is a mechanism of mapping virtual memory addresses to data location
on solid-state drive.

Log-structured object store is responsible for storing data e�ciently on SSD block de-
vice.

2.2. Conclusions

Overall architecture of SSDAlloc is very inspirational. User-space memory management
proved to be very useful in creating an allocation library. Runtime system keeping pages
cached and distinction between clean and dirty ones proved to be helpful as well. Another
big advantage is a simple, natural division of layers: application, runtime and storage.

As a result, fsalloc's high-level design is in many ways similar to SSDAlloc.

17





Chapter 3

Design and implementation

In order to evaluate the potential in allocation strategies presented by SSDAlloc, fsalloc �
an open source allocation library � was implemented. The purpose of creating fsalloc was
to provide means of moving the responsibility of storing objects from RAM to other types of
storage, such as solid-state drives, hard drives and compressed memory. Emphasis was placed
on minimizing the invasiveness of the library, which can be measured by lines of code needed
to be rewritten in target project in order to make it compatible with fsalloc.

3.1. Design

The library can be seen as three closely cooperating layers: application, runtime and storage.

Application layer is responsible for providing an interface to end-user. In case of fsalloc,
end-user can be regarded as a programmer willing to use alternative memory allocation in
his/her project. Speci�cally, fsalloc's application layer is a set of C/C++ functions and it is
thoroughly described in subsection 3.5.1.

Runtime layer represents a core part of fsalloc library. It is responsible for providing a
way of overriding memory access routines, maintaining cache of most frequently used objects
and gathering statistics. Its details are presented in subsection 3.5.2.

Storage layer provides means of keeping data in persistent and e�cient way. In fsalloc,
all objects that need to be written back from cache are processed by storage layer. Detailed
description can be found in subsection 3.5.3.

3.2. Choice of programming language

One of the decisions to be made before implementing a library is the one regarding used
programming language. Language chosen for the implementation of fsalloc is C++, with a
strong emphasis on the fact, that it could be easily ported to C.

Reasons why C/C++ are preferred languages for creating such library are as follows:

1. fsalloc is de�ned as a library for C/C++ programming,

2. C is fast,

3. C o�ers direct interface for system calls, which is a core functionality for this project,

19



4. with C, creating a complex, architecture-speci�c signal handler is easy,

5. with C, registering a signal handler is easy,

6. C allows direct operations on memory,

7. C++ is excellently compatible with C,

8. C++ has templates, which makes generic programming type-aware,

9. C++ has standard template library with e�cient implementations of frequently used
data structures and algorithms.

No other languages were seriously considered as candidates for fsalloc implementation.

3.3. Used libraries and portability

fsalloc does not depend on many external libraries. Although some interesting data struc-
tures can be found in Boost [7], fsalloc's requirements were simple enough to avoid creating
additional external dependencies. There are 2 aspects of portability that must be mentioned,
though.

3.3.1. Linux-speci�c headers

Memory management is both system and architecture-speci�c. As such, it uses many Linux-
speci�c header �les, which makes it not easily portable to other platforms.

sys/mman.h is needed for architecture-speci�c mprotect �ags and structures used by signal
handlers. On x86/64, which was chosen as a representative architecture for fsalloc implemen-
tation, it is possible to extract useful pieces of information from data passed to segmentation
fault signal handler.

Function signature passed to sigaction call used for registering a signal handler has a third pa-
rameter, which is architecture-dependent. Code snippet 3.1 shows how to �nd out if memory
access that triggered SIGSEGV was a read or write attempt on x86/64 processors. Without
that information, it would not be possible to distinguish dirty memory regions (i.e. with
di�erent contents in cache than on persistent storage) from clean ones. Hence, all cache en-
tries, even the ones that were never accessed, would need to be synchronized with storage �
which is a severe performance issue, especially if the storage happens to be a magnetic disk.

20



Listing 3.1: Checking access type in segmentation fault handler

int get_mprotect_flags(void *ctx) {

int flags;

ucontext_t *context = (ucontext_t *)ctx;

if (context ->uc_mcontext.gregs[REG_ERR] & 0x2) {

flags = PROT_READ | PROT_WRITE;

} else {

flags = PROT_READ;

}

return flags;

}

void handler(int signum , siginfo_t *info , void *ctx) {

...

int flags = get_mprotect_flags(ctx);

...

}

unistd.h contains POSIX interface for system calls. Since implementation is de�nitely
Linux-speci�c, portability of the library is considered only within POSIX standards.

3.3.2. BerkeleyDB

fsalloc enjoys the bene�ts of using open-source database library � Berkeley DB [6]. It is used
as a primary storage back end in the project. Details are thoroughly described in section
3.5.2.

3.4. User-space memory management

The core part of fsalloc library is handling the allocation process. One way of interfering with
low level memory management is to write kernel-space code. Page allocation routines can,
however, be pulled to user space with the help of signal handlers.

3.4.1. Details

Implementation of user-space memory manager is based on a schema described in section
2.1.3. Steps below illustrate how to achieve custom memory access routines. Each line has a
corresponding description.

1. sigaction(SIGSEGV , &sa, &default_sigsegv );

2. addr = mmap(NULL , size , PROT_NONE ,

MAP_ANONYMOUS | MAP_PRIVATE , -1, 0);

3. x = addr;

4. mprotect(addr , size , PROT_READ | PROT_WRITE );

5. memcpy(addr , tmp , size);

21



6. mprotect(addr , size , PROT_READ );

7. madvise(addr , size , MADV_DONTNEED );

1. Register a custom signal handler for segmentation fault.
The handler should check if a fault was caused by a regular error or by the protection
set by fsalloc. It should only proceed with pages that are a part of fsalloc pool.

2. Map an anonymous page, obtaining its virtual address.
Anonymous mapping is very similar to a malloc call. It returns a contiguous memory
area consisting of at least 1 whole page. Mapped page does not occupy space until
something is actually written to it.

3. Access the address, which triggers custom SIGSEGV handler.
On x86/64 architecture it is possible to distinguish if a fault was triggered by a read
or write request. It allows a huge performance optimization based on writing back only
dirty (modi�ed) pages to storage, evicting the clean ones without any I/O operations.

4. Unprotect a page, so it could be written to.
The page needs to be unprotected or it would cause another segmentation fault, which
leads to a livelock.

5. Copy data from storage to the page.
The exact procedure of extracting data from storage will be discussed in 3.5.2.

6. (optional) Reprotect page if it was accessed only for reading.
This is another architecture-dependent feature, fortunately available in x86/64. Page
accessed only for reading remains clean, so it should be still protected from write at-
tempts. That way, pages will be marked dirty if and only if a write occurs.

7. Remove page from system cache.
A madvise call will trigger Linux kernel's aggressive policy of removing the page from
cache right away, which is very helpful for working with anonymous mappings � it
stops occupying physical space as soon as the madvise call ends.

There are two potential problems to be considered with user-space memory management,
already mentioned in subsection 2.1.3. Firstly, only a small subset of functions can be safely
used in signal handlers. These functions need to be reentrant, which according to the standard,
is to meet the following conditions.

Reentrant function

� must hold no static (or global) non-constant data,

� must not return the address to static (or global) non-constant data,

� must work only on the data provided to it by the caller,

� must not rely on locks to singleton resources,

� must not modify its own code (unless executing in its own unique thread storage),

� must not call non-reentrant computer programs or routines.

22



Though mprotect is not on a reentrant-safe list according to POSIX standard, being a
system call, meets the required conditions in Linux.

Second issue is to ensure, that signal handler does not use any global/static variables,
which is not the case in fsalloc. However, if implementation guarantees, that access to these
variables is never simultaneous, everything would work �ne.

The strict rules of reentrancy might be in con�ict with handlers which use static data
structures, but, in fsalloc, it is assured that operations on such structures will never be
interrupted by another handler of the same family. It is the case because SIGSEGV is
a synchronous signal in Linux � it is guaranteed that its handler will be executed right after
memory access fault.

Given these facts, fsalloc can be safely treated as reentrant friendly, as long as it is used as
allocation library in single-threaded projects or ones that ensure thread safety on their own.
Current implementation of LizardFS's master server meets these conditions.

3.4.2. Performance of signal-based management

One might wonder if memory management based on overloading signal handlers is e�cient.
Having a closer look at implementation details of signal handling in x86/64 Linux should
dispel any doubts. This subsection is based on an article from Linux Journal [4].

Signals are used to notify the process/thread of a certain event. They can be divided into
two groups.

Synchronous signals occur as a direct result of instruction stream, e.g. trying to perform
an illegal operation. SIGSEGV, a result of illegal memory access, is a good example of
a synchronous signal.

Asynchronous signals occur independently to the process' instruction stream. A natural
example of asynchronous signal is SIGKILL, sent to a process in order to force its termination.

Each task structure which represents a process in Linux kernel keeps certain information
related to signal handling. The most important ones are:

� table of signal handlers,

� bitmask of blocked signals,

� signal queue, implemented as a double-linked list.

Handling a synchronous signal is a detailed process, simpli�ed example of which (for x86/64
architecture) is presented below.

1. User attempts to write to a read-only page.

2. Page fault handler (source: kernel/entry.S) is executed.

3. entry.S calls do_page_fault (source: arch/x86/mm/fault.c), which extracts hardware-
speci�c fault parameters and does basic range validation.

23



4. do_page_fault calls generic mm_fault (source: mm/memory.c), page information is
gathered from page table and further checks occur.

5. Signal is forced to be the �rst one by force_sig(SIGSEGV, current) call.

6. Current signal � previously forced SIGSEGV � is queued for execution.

7. All user-space registers are saved, user stack is modi�ed to jump back to kernel after
handling is �nished (since the handing itself will be performed in user space).

8. Kernel returns to user space.

9. Execution jumps to registered signal handler.

10. Control is given back to the kernel by sys_sigret call, previously enqueued for execution
on user stack.

11. User-space data is restored.

12. Control goes back to user space.

Despite switching from user to kernel-space and back, described procedure consists of
relatively simple operations. Thanks to that, total overhead of handling a segmentation fault
signal ranges from 3 to 4 microseconds [4]. For comparison, latency for reading 4KB from
solid-state drive can reach over 100 microseconds.

Given these facts, it can be stated that signal handling time overhead is negligible com-
pared to latencies imposed by SSD storage, not to mention magnetic hard drives.

3.5. Implementation details

Implementation details of each layer (application, runtime, storage) are described in this
section.

3.5.1. Application layer

fsalloc o�ers several interfaces for accessing its functionalities. All de�nitions are included in
header �le <fsalloc.h>.

fsalloc::init()
Initialization function. Initializing fsalloc module is required before using its functionalities.
Init function takes two parameters:

� path to database
Full path to a place where database �le should be stored. It is advised to pick a place
that provides enough memory for storage. If the underneath device is an SSD, it will
provide greater performance than casual hard disk drive. A detailed comparison of
storage variants is presented in chapter 4.

� size of page cache
Amount of pages constantly kept in random-access memory. This value is a compromise
between performance (high values equals more cache hits) and memory usage (low values
consume less resources). Default capacity of page cache should be selected on the basis
of practical experiments.

24



Example:

void system_init () {

...

fsalloc ::init("/mnt/zram/fsalloc.bdb", 2048U);

...

}

fsalloc::term()
Termination function. Terminating fsalloc module should be done on system exit in order
to keep structures consistent and avoid memory leaks. This function does not need any
parameters, because it is responsible only for triggering database shutdown.
Example:

void system_exit () {

...

fsalloc ::term ();

...

}

fsalloc::fsalloc()
Basic function with malloc-like interface. It takes one numerical parameter, which is a number
of requested bytes. Return value is, as in malloc call, of type void *.
Example:

Object *obj;

void *memory = fsalloc :: fsalloc(sizeof(Object ));

obj = (Object *) memory;

obj.process(data);

fsalloc::fsfree()
Basic function with free-like interface. It takes one argument, which is a memory address
previously allocated by fsalloc. It does not return anything, same as free call.
Example:

Object *tmp = (Object *) fsalloc :: fsalloc(sizeof(Object ));

tmp.process(data);

fsalloc :: fsfree ((void *)tmp);

fsalloc::fsalloc<T>()
Type-aware version of fsalloc() call. It is semantically equivalent to calling fsalloc::fsalloc
function with size of templated type passed to it and returns a pointer already casted to
appropriate type.
Example:

using namespace fsalloc;

int *i = fsalloc <int >();

struct entry *e = fsalloc <struct entry >();

25



fsalloc::fsfree<T>()
Type-aware version of fsfree() call. It is semantically equivalent to calling fsalloc::fsfree func-
tion.
Example:

using namespace fsalloc;

fsfree <int >(i);

fsfree <struct entry >(e);

fsalloc::fsnew()
C++-style variation of new statement. It allows custom constructor parameters to be passed
to it.
Example:

using namespace fsalloc;

int *i = fsnew <i>();

std:: string s

= fsnew <std::string >("custom_constructor_parameter",

0, 6);

std::vector <int > x = fsnew <std::vector <int >>(5);

fsalloc::fsdelete()
C++-style variation of delete statement. Template parameters can be omitted, as they are
deducible from arguments.
Example:

fsdelete <int >(i);

fsdelete <>(s);

fsdelete <>(x);

struct fsalloc::managed
Convenient class designed to be a base for other structures that should use fsalloc as their
allocation method. fsalloc::managed class has overridden new/delete operators, which causes
structures inheriting from it to use fsalloc as allocator.
Example:

struct foo : public fsalloc :: managed {

int x;

int y;

int z;

char name [256];

struct foo *next;

struct foo *prev;

};

3.5.2. Runtime layer

Runtime engine for fsalloc consists of the following elements described in this section.

26



Region cache
A �rst-in �rst-out container of addresses. A memory region is de�ned as a contiguous virtual
memory block composed of at least 1 page. Maximal capacity of this structure is speci�ed
by a parameter passed to initialization function. Once a memory region is allocated and
accessed, it is inserted into region cache. It resides in there until other regions are accessed
often enough to push it out of cache.

If region is clear, i.e. it was not accessed for writing, it does not need to be written back, as
there are no di�erences between its contents in RAM and in the database.

If region is dirty (accessed for writing at least once), it needs to be written back to the database
before eviction, as its state changed.

After successful writeback, given region is freed from memory with madvise() system call.

BerkeleyDB driver
Database access point.

BerkeleyDB o�ers various methods of storing objects.

1. Btree � where data is kept in a sorted, balanced tree structure.

2. Hash � which uses dynamic hash table algorithms

3. Heap � which stores objects in a �le and references them only by their o�set.

4. Queue � designed for keeping �xed-size records and fast tail inserts.

5. Recno � which stores both �xed and variable-length records.

Heap method was chosen as the best suited for fsalloc needs. It works similarly to memory
allocation � a key for database entry is returned once the item is inserted. Structure used as
key in heap method is of type DB_HEAP_RID, which is 8 bytes long (conveniently, just
like a regular pointer on 64 bit architectures). Inside, it contains a 32 bit page number and 32
bit o�set. Passing this 8 byte value is enough to extract the desired item from the database.

Heap storage works exceptionally well when inserted items have �xed size, which is for-
tunately a case in most important structures of LizardFS. If sizes do not vary much, internal
database fragmentation is at a negligible level.

Database initialization happens during fsalloc module start-up. db::init() call invokes creating
database �le and setting up necessary parameters:

� size of item cache, needed for creating BerkeleyDB internal entry caching,

� type of storage (in this case, heap method).

Once an fsalloc allocation occurs, a page is mapped from virtual memory. Then, if page wasn't
modi�ed, no database access is required. Otherwise, data extracted from page is stored in
BerkeleyDB with a call to db::put(). Overwriting an existing element is, of course, possible as
well.

27



Pages are extracted from database with a db::get() call.

During fsalloc termination procedures, db::term() invokes closing a database, with a special
"NO SYNCHRONIZATION" �ag. Passing the �ag accelerates the process, since data kept in
this database is dynamic, so it would be overwritten on another module initialization anyway.

3.5.3. Storage layer

BerkeleyDB stores its database in a �le. Choosing a path for this �le is a crucial performance
and safety oriented decision. Underlying �le system should ensure that:

� database �le does not get corrupted easily,

� access to the �le contents is as swift as possible.

According to the guidelines, any POSIX compliant �le system should be su�cient to serve
a BerkeleyDB �le, but �nding a solution that provides high performance and reasonable level
of safety is a complex task.

Chapter 4 covers the topic of comparing possible ways of storing allocation database.

28



Chapter 4

Choice of storage

Where to store data allocated with fsalloc library? Answer to this question is not simple
and it depends on particular needs of the application. Typical hard drives do not o�er high
I/O speed, but, on the other hand, they are relatively cheap. SSD drives are clearly a better
choice if performance is the main issue, but they cost more and wear faster than HDD. An
interesting idea is to take advantage of in-kernel memory compression mechanisms included
in Linux.

Table 4.1 shows a brief summary of possible means of database storage, taking into account
three important features: speed, price and e�ciency in saving memory.

Type of storage fast cheap memory e�cient∗

HDD 7 3 3

SSD 3 7 3

ZRAM 3 3 7
∗meaning that RAM overhead is constant and insigni�cantly low

Table 4.1: Qualities of chosen storage types

Let us consider advantages and disadvantages of speci�c types of storage in detail.

4.1. HDD

4.1.1. Introduction

Hard disk drives use rapidly rotating magnetic platters to store and serve data. IBM 350 is
believed to be a �rst hard drive and was introduced in 1956 as a part of IBM 350 RAMAC
computer. IBM 350 was able to store 3.75 MB of data on 50 disks and was reported to have
the size of two refrigerators.

Each write operation applied to a hard disk drive triggers magnetizing a ferromagnetic
�lm placed on a platter. Reading from a HDD involves detecting changes in magnetization
of a mentioned �lm. Input/output operations are performed by read-and-write heads, which
are responsible for both translating magnetic �eld to electrical current (reads) and vice-versa
(writes). In order to operate on a given memory sector, head must be mechanically moved to
the region.

29



4.1.2. Access time

Due to its nature, which consists of storing data on constantly rotating disks and heads trying
to place themselves above certain sectors, hard disk drives most costly factors are seek time and
latency. Block I/O schedulers designed for hard drives apply various sophisticated heuristics
to minimize these factors by trying to sort and merge individual read/write requests in order to
reduce redundant disk head operations. Nonetheless, even hypothetical clairvoyant algorithm
would not be able to eliminate the overhead caused by moving hardware components.

Seek time is the time needed to place an arm of read-and-write head above region where
I/O operation should be performed. If two consecutive requests refer to physically distant
regions, seek will be correspondingly slower. Due to this fact, sorting individual requests on
the basis on their position is essential in I/O schedulers.

Latency is the time needed to rotate the platter to bring the requested sector under the
head so it could be read from/written to. It is highly dependent on disk's rotational speed,
expressed in rpm unit, which stands for Revolutions per minute. Example values from drives
available on the market are 15 000 rpm, 7 200 rpm, 4 800 rpm.

Data transfer rate is a third access time factor worth mentioning. It determines how fast
data can be read from the sector, once arms and platters are appropriately set.

Average values of described factors are presented in table 4.2.

Value Seek time Latency Data transfer rate

low 4 ms 2 ms 200 MB/s

high 5 ms 5 ms 300 MB/s

Table 4.2: HDD features

4.1.3. Prices

Hard drives are considered to be cheap when it comes to price per storage capacity. An
average 1 terabyte HDD can be acquired for about $50.

4.1.4. Benchmarks

Table 4.3 shows average speeds of selected operations, gathered from benchmark results from
various disks of di�erent vendors and prices [21]. All extracted values were associated with
customer-grade disks.

30



Operation Speed
read 150 MB/s

write 140 MB/s

mixed read/write 128 MB/s

4K read 1 MB/s

4K write 1 MB/s

4K mixed read/write 0.4 MB/s

Peak speed
read 190 MB/s

write 180 MB/s

mixed read/write 160 MB/s

4K read 1.5 MB/s

4K write 2 MB/s

4K mixed read/write 0.6 MB/s

Table 4.3: HDD benchmark [21]

4.2. SSD

4.2.1. Introduction

Solid state drives use integrated circuits to provide persistent memory storage. As of present
year, most SSD's are based on NAND-based �ash memory, which is able to retain data without
constant power source. NAND �ash architecture was introduced by Toshiba in 1989 and its
memory can be accessed similarly to other block devices, like HDD. For speci�c performance
purposes, SSD can also be constructed from RAM, but then it might require a separate power
source, e.g. a battery for ensuring data persistence.

In contrast to hard disks, SSD's do not rely on mechanical elements like platters and
moving read/write heads. Aside from �ash memory, solid-state drive contains a controller,
which is an intermediary between the memory and host computer.
Controller's responsibilities may include:

� bad block mapping � needed to locate blocks that are unusable because they wore
down or other combined error occurred,

� I/O caching � used for increased performance when subsequent memory access calls
are local,

� garbage collection � needed to get rid of small amounts of freed data in block granu-
larity,

� encryption � optional feature for security purposes,

� ECC � error-correcting codes, used for detecting memory corruptions,

� read scrubbing � repairing corrupted memory with the help of error-correcting codes.

31



4.2.2. Access time

Many performance bottlenecks of HDD's do not apply to solid-state drives. First of all,
start-up time for SSD's is negligible, because virtually no physical components need to be
prepared. For comparison, hard disks may need several seconds to reach their spinning speed
and prepare the read/write head.

Seek time for an SSD is typically under 100ns, because its underneath memory already
supports random access. No mechanical heads need to be moved in order to access the data.

Latency is not a concern for solid-state disk, as its value is similar to seek time and can be
measured in nanoseconds.

4.2.3. Prices

A consumer-grade 1 terabyte solid-state drive can be obtained for about $300, which makes
it around six times more expensive than a consumer-grade HDD.

4.2.4. Benchmarks

Benchmark table 4.4 corresponds to table 4.3.

Operation Speed
read 480 MB/s

write 400 MB/s

mixed read/write 380 MB/s

4K read 36 MB/s

4K write 80 MB/s

4K mixed read/write 30 MB/s

Peak speed
read 530 MB/s

write 512 MB/s

mixed read/write 512 MB/s

4K read 40 MB/s

4K write 140 MB/s

4K mixed read/write 50 MB/s

Table 4.4: SSD benchmark [21]

4.3. In-kernel compression

4.3.1. Introduction

In-kernel memory compression became popular as Linux was ported to smaller and smaller
devices. These devices usually have small RAM capacity and sometimes they do not possess
persistent memory at all. Such con�gurations make even the smartest swapping mechanisms
useless � there is no place available to store the excessive pages. Compressed memory pools
changed this unfortunate case. If pages that occupy memory are easily compressible (e.g.

32



they are �lled with zeros, which is surprisingly often a case), they could be stored in these
pools and save up to 100% of RAM. Experiments have shown that an average page could be
compressed to approximately 50% of its original size. To provide a simple example, creating a
memory pool of 256MB could potentially accept 512 MB of data, which could be a life saving
amount. Linux developers provided in-kernel memory compression mechanisms for various
use cases. Two main modules currently residing in the kernel tree are zswap and zram.

4.3.2. Implementations

zswap is a mediator between memory access and swap mechanism. A page that candidates
for being swapped is checked by zswap �rst, and if it meets the conditions, it is put into
compressed memory pool instead of being swapped to disk. Only pages with good compression
ratio are allowed into the pool. Zswap is an interesting module, but it was not found useful for
fsalloc storage back end, since it is designed speci�cally to intercept native swap mechanism
in Linux.

zram is a block device that stores its data compressed in RAM. In order to work, zram mod-
ule must be enabled during kernel compilation. Fortunately, most popular Linux distributions
have this module enabled in their kernel by default.

4.3.3. Usage examples

Step by step guide for enabling zram module [12], e.g. as fsalloc storage:

� Turning on the module can be done with modprobe utility. Optionally, number of zram
devices might be passed (default is 1).

$ modprobe zram num_devices =2

� Compression algorithm (discussed later) can be set by passing a value to sysfs.

$ echo lzo > /sys/block/zram0/comp_algorithm

$ echo lz4 > /sys/block/zram1/comp_algorithm

� Initialization is done by setting disk size to devices via sysfs. Note, that this amount of
memory will actually be reserved in RAM.

$ echo 512M > /sys/block/zram0/disksize

$ echo 8G > /sys/block/zram1/disksize

� zram can be treated as a regular block device, so �rst thing to do is to create a �le
system on it.

$ mkswap /dev/zram0

$ mkfs.xfs -l logdev =/dev/sdh ,size =65536b /dev/zram1

� After the �le system is initialized, zram devices can be mounted or registered as swap

$ swapon /dev/zram0

$ mount -t xfs /dev/zram1 /mnt/storage

� Passing a path of mounted zram device to fsalloc initialization function will result in
keeping its data still in RAM, but in compressed fashion.

33



fsalloc ::init("/mnt/storage/fsalloc.bdb", 8192);

� Various zram statistics are available at sysfs.

$ cat /sys/block/zram0/orig_data_size /sys/block/zram0/compr_data_size

$ cat /sys/block/zram1/num_{reads ,writes}

$ cat /sys/block/zram1/failed_{reads ,writes}

4.3.4. Compression algorithms

In-kernel memory compression's performance depends almost exclusively on its underlying
algorithm. For various reasons, the most popular algorithms for this speci�c use case are
from the Lempel-Ziv family of dictionary compression � lzo and lz4. Compared to other
algorithms, the mentioned ones are ahead of the rest when it comes to decompression time,
mainly at the cost of compression ratio. Decompression time is the key factor because of
the nature of random memory access itself � reads are considered to be the most frequent
operation, and therefore overhead for these operations should be minimal.

lzo is a real-time data compression library, available both on open-source license and pro-
prietary one. It was created and is maintained by Markus F. X. J. Oberhumer. It is written
in C, and, as advertised, provides very high decompression speed.

lz4 is a fast, lossless compression algorithm written in C by Yann Collet, available on open-
source license. Similarly to lzo, its top priority is to provide very high decompression speed.

4.3.5. Benchmarks

Tables 4.5, 4.6, 4.7, 4.1 show a comparison of various popular compression algorithms to lzo
and lz4 [17]. Tests were executed on a compressed Linux kernel source code in version 3.3
with �le size of 466083840 B (445 MB).

Level gzip bzip2 lzma lzma-e xz xz-e lzo lz4

1 26.8% 20.2% 18.4% 15.5% 18.4% 15.5% 35.6% 36.0%

2 25.5% 18.8% 17.5% 15.1% 17.5% 15.1% 35.6% 35.8%

3 24.7% 18.2% 17.1% 14.8% 17.1% 14.8% 35.6% 35.8%

5 22.0% 17.6% 14.9% 14.6% 14.9% 14.6% - 35.8%

7 21.5% 17.2% 14.4% 14.3% 14.4% 14.3% - 24.9%

9 21.4% 16.9% 14.1% 14.0% 14.1% 14.0% - 24.6%

Table 4.5: Compression ratio. Source: Quick Benchmark: Gzip vs Bzip2 [17].

34



Level gzip bzip2 lzma lzma-e xz xz-e lzo lz4

1 8.1s 58.3s 31.7s 4m37s 32.2s 4m40s 1.3s 1.6s

2 8.5s 58.4s 40.7s 4m49s 41.9s 4m53s 1.4s 1.6s

3 9.6s 59.1s 1m2s 4m36s 1m1s 4m39s 1.3s 1.5s

5 14s 1m1s 3m5s 5m 3m6s 4m53s - 1.5s

7 21s 1m2s 4m14s 5m52s 4m13s 5m57s - 35s

9 33s 1m3s 4m48s 6m40s 4m51s 6m40s - 1m5s

Table 4.6: Compression time. Source: Quick Benchmark: Gzip vs Bzip2 [17].

Level gzip bzip2 lzma lzma-e xz xz-e lz4 lz4

1 3.5s 3.4s 6.7s 5.9s 7.2s 6.5s 0.4s 1.5s

2 3s 15.7 6.3s 5.6s 6.8s 6.3s 0.3s 1.4s

3 3.2s 15.9s 6s 5.6s 6.7s 6.2s 0.4s 1.4s

5 3.2s 16s 5.5s 5.4s 6.2s 6s - 1.5s

7 3s 15s 5.3s 5.3s 5.9s 5.8s - 1.3s

9 3s 15s 5s 5.1s 5.6s 5.6s - 1.2s

Table 4.7: Decompression time. Source: Quick Benchmark: Gzip vs Bzip2 [17].

lz4 lzo gzip

0

200

400

600

800

1,000

1,200

342
278

55

1,125

296

127

sp
ee
d
(M

B
/s
)

compression decompression

Figure 4.1: Compression/decompression speeds for lzo, lz4 and gzip algorithms

4.4. Comparison

There is no universal best solution among presented mechanisms. The choice should be based
on performance requirements, budget and balance between these factors.

35



4.4.1. Price-oriented choice

Emphasis on low price rules out solutions based on high-end solid-state drives.

HDD There is one big advantage in choosing hard drives for allocation purposes � it is
the most popular storage solution on the market. Because of that, creating a JBOD (just a
bunch of disks con�guration is usually free from additional expenses � existing hardware can
be utilized.

ZRAM An interesting alternative for low price HDD is to use in-kernel memory compression
mechanisms. It outperforms hard drives in access speed by orders of magnitude (see tables in
section 4.3.4). There is a major disadvantage of using compression as storage � it only extends
available RAM by about a half, but it is not scalable after that threshold. Moreover, it is
often not possible to predict the compression ratio of data provided to compression algorithms
� in a very pessimistic scenario, it can even reduce the amount of memory available in the
system.

4.4.2. Performance-oriented choice

If a primary goal is to ensure high e�ciency, using a storage solution based on HDD is a bad
choice.

SSD access time is closer to RAM than HDD, which can be seen in section 4.2.4. There are
two disadvantages to be taken into account when considering solid-state drives as a storage
back end:

� cost of an SSD is higher than a regular HDD

� solid-state drives wear out much faster than HDD, especially when used inappropriately.
Frequent writes to the same memory sector make it unusable because of �ash memory
properties. As a result, one must consider the lifespan of an average solid-state drive
before choosing it as a basic storage for memory allocation.

ZRAM � in-kernel memory compression is not only an a�ordable solution, but also a high
performance one. In uses that do not require decreasing memory overhead to a large extent
it should be considered a legitimate candidate.

4.4.3. Summary

Charts 4.2-4.5 visualize selected important traits of storage back ends. Advantages and dis-
advantages of each particular solution is clearly visible on these charts � HDD is slow, SSD is
fast, yet expensive and �nally, zram is fast and cheap, but does not o�er 100% memory save.

36



Performance

HDD

SSD

compression

0 50 100 150 200 250 300 350 400 450 500

Figure 4.2: Expected read speed for selected storage back ends (MB/s)

HDD

SSD

compression

0 50 100 150 200 250 300 350 400 450 500

Figure 4.3: Expected write speed for selected storage back ends (MB/s)

Utility

HDD

SSD

compression

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.4: Expected reclaimed RAM capacity for selected storage back ends

Cost

HDD

SSD

compression

0$ 50$ 100$ 150$ 200$ 250$ 300$ 350$ 400$ 450$ 500$

Figure 4.5: Average price per 1 TB for selected storage back ends

37



Conclusion

Of all back-end storage choices, HDD and in-kernel compression are the ones that could be
su�cient for small scale use cases, while imposing little or no expenses. When performance
and reliability are the key factors, solid state drives are probably the most �tting choice.

38



Chapter 5

Integration with LizardFS

By design, fsalloc is intended to be easily applicable to existing projects. Incorporating
fsalloc into LizardFS required only a few lines of code. Actually, adding fsalloc library to
automatic compilation system took more script lines than all performed code modi�cations.
For simplicity, only fsnode structure allocation was chosen to be managed by fsalloc instead
of native routines. The reasoning is that fsnode is responsible for majority of master server's
overhead (ref: A.4), so memory reduction should be clearly visible in test results. On the
other hand, should fsalloc prove to have bad impact on performance even if it was used to
handle only a single structure, no further code changes and testing would be necessary.

5.1. Build con�guration

LizardFS' auto building system is based on CMake [8] project. Adding fsalloc as a module of
LizardFS requires preparing a simple con�guration �le � available on the attached CD.

5.2. Code changes

Required code modi�cations are so sparse, that they can all be presented and brie�y described
in this chapter. Changes are presented in di� uni�ed format [20].

First of all, appropriate header (�gure 5.1) needs to be included in source �le. Then,
class which represents �le system's inode is extended with custom allocation provided by
fsalloc (�gure 5.2). Afterwards, loading of fsalloc structures is added to system's initialization
routines (�gure 5.3). Finally, library unload is added to system's termination routines. These
steps are su�cient to integrate fsalloc allocation procedures into LizardFS. Essential changes
involved adding 3 lines of code and amending only a single one, making it 4 lines in total.

39



Listing 5.1: Adding header

@@ -50,6 +50,7 @@

#include "common/slogger.h"

#include "common/tape_copies.h"

#include "common/tape_copy_state.h"

+#include "fsalloc/fsalloc.h"

#include "master/checksum.h"

#include "master/chunks.h"

#include "master/goal_config_loader.h"

Listing 5.2: Changes in fsnode class

@@ -182,7 +183,7 @@ struct xattr_inode_entry {

struct xattr_inode_entry *next;

};

-class fsnode {

+class fsnode : public fsalloc :: managed {

public:

std::unique_ptr <ExtendedAcl > extendedAcl;

std::unique_ptr <AccessControlList > defaultAcl;

Listing 5.3: Changes in initialization code

@@ -8270,6 +8272 ,7 @@ LIZARDFS_CREATE_EXCEPTION_CLASS

char const MetadataStructureReadErrorMsg []

= "error reading metadata (structure)";

void fs_loadall(const std:: string& fname ,int ignoreflag) {

+ fsalloc ::init("/var/lib/lizardfs/fsalloc.bdb", 8192);

cstream_t fd(fopen(fname.c_str(), "r"));

std:: string fnameWithPath;

if (fname.front() == '/') {

Listing 5.4: Changes in termination code

@@ -8227,6 +8228 ,7 @@ void fs_term(void) {

gMetadataLockfile ->writeMessage("no_metadata: 0\n");

}

}

+fsalloc ::term ();

}

void fs_disable_metadata_dump_on_exit () {

40



5.3. Summary

One of the primary objectives set for fsalloc was to assure that integrating it with an existing
project would be trivial. This goal was de�nitely achieved � the process of injecting fsalloc
library into LizardFS was a matter of few technical amendments. This optimistic result makes
fsalloc a great candidate for performing proof of concept checks of memory optimizations.
Overriding native allocation routines with the ones o�ered by fsalloc can be done even without
having deep knowledge of project's implementation. Moreover, required changes apply to
allocation routines only, which makes them fully reversible � if test results suggest that
original allocation procedures provided better performance, a full rollback is always possible.

In conclusion, the following requirements for the integration process have been successfully
ful�lled:

� only few code changes were necessary (approx 0.013% of project size1),

� code changes were trivial,

� changes were fully reversible.

With fsalloc properly injected into LizardFS master server, it is possible to begin the most
vital part of this thesis � performance tests.

1Assuming that LizardFS consists of around 30 000 lines of code and integration process required 4 lines
to be amended.

41





Chapter 6

Test results

An important part of fsalloc's implementation process involved creating and executing tests.
Validation tests were used to identify bugs, regression tests ensured that the number of passed
test cases never decreased after applying code modi�cations. Allocation libraries are imple-
mented for one purpose, though � increasing performance. Therefore, this whole chapter
is devoted to presenting results of extensive performance tests of fsalloc. Instead of prepar-
ing a set of isolated cases for every single operation, performance tests were conducted as a
long-term examination of a real application using fsalloc routines for memory management.

Naturally, integrating LizardFS with fsalloc created a good opportunity to measure the
allocation library's performance in practical environment. Using an exact replica of real life
production installation of LizardFS cluster allowed to see if fsalloc implementation is a step
in the right direction � or, conversely, it causes impassable bottlenecks and needs a thorough
redesign.

Cluster consisted of a master server, shadow master and 3 chunkservers, all residing on
dedicated machines. The installation kept �les in various number of copies (from 1 to 3). A
small portion of all �les contained extended attributes and access control lists.

6.1. Parameters

Test scenarios are intended to show various statistics of master server with di�erent allocation
routines. To provide a fuller context, hardware parameters of the machine that hosted master
server are listed in table 6.1. Table 6.2 shows more detailed view into LizardFS cluster
con�guration.

processor Intel(R) Xeon(R) CPU E3-1226 v3 @ 3.30GHz
memory 4 x 8 GB RAM, DDR3, 1600 MHz
network 1Gbps Ethernet

hard disk drive 1 TB SATA 7200rpm
solid state drive 128 GB SATA

Table 6.1: Hardware parameters

43



number of �les 18630347
RAM usage 8 GiB

shadow servers 1
metaloggers 1
chunkservers 3

clients 4
average �le size 256KiB

average name length 32

Table 6.2: LizardFS cluster con�guration

6.2. Con�gurations

The following con�gurations were tested:

� no fsalloc enabled,

� fsalloc with single stream in-kernel compression,

� fsalloc with multiple stream in-kernel compression,

� fsalloc with HDD,

� fsalloc with SSD.

Performance tests were carried on each con�guration without amending any internal LizardFS
options. The only variable factor was the storage back end for allocation library.

6.3. Scope

Performance tests were designed to provide information on two factors � memory usage and
time spent on performing metadata operations.

Template result sheet for a single con�guration contains the following data:

1. time spent on starting master and loading metadata to memory,

2. time spent on a set of metadata operations:

� creating �les,

� adding extended attributes to �les,

� changing �le owners,

� attaching a replication goal to �les,

� reading �le goals,

� removing �les,

3. CPU load on the machine during metadata operations,

4. I/O load on the machine during metadata operations.

44



6.4. Result sheets

6.4.1. without fsalloc

This result sheet presents the state of LizardFS cluster before supplying it with fsalloc. Table
6.3 plays the role of reference point for the rest of test sheets. Additionally, all results are
combined into �gure 6.9 in order to make the comparison more vivid. Memory and CPU
usage charts for this case also include the moment of transition to a con�guration with fsalloc
enabled. First part of the chart presents original master state. Transition to fsalloc assisted
version is identi�able as a gap in both memory and CPU charts. The break was caused by the
need of restarting master server with preloaded allocation routines � substituting a memory
manager without restarting a binary would be very troublesome for both programmers and
clients.

Operation # of �les value (s)

Master server restart time N/A 58.614

Creating �les 10 000 8.645

Creating �les 100 000 134.737

Setting extended attributes 10 000 8.645

Setting extended attributes 100 000 85.662

Changing owner 10 000 10.187

Changing owner 100 000 101.393

Setting goal 10 000 26.932

Setting goal 100 000 249.210

Reading goal 10 000 26.410

Reading goal 100 000 243.189

Removing �les 10 000 7.344

Removing �les 100 000 127.701

Table 6.3: Metadata operations with fsalloc disabled

6.4.2. single stream zram

Table 6.4 contains results for the �rst in-kernel compressed memory con�guration. Di�erence
between single and multiple streams can be examined by comparing this result sheet with
�gure 6.5. Charts 6.1 and 6.2 visualize the moment of reloading master server with new
memory allocation routines � around 18:00. A drop in used memory as well as a rise in CPU
usage are clearly visible. The most noticeable di�erence is a nearly twentyfold increase in
master server restart duration. This issue is addressed and explained in subsection 6.7.2.

45



Operation # of �les value (s)

Master server restart time N/A 1164.16

Creating �les 10 000 9.625

Creating �les 100 000 141.627

Setting extended attributes 10 000 8.015

Setting extended attributes 100 000 84.552

Changing owner 10 000 11.120

Changing owner 100 000 104.738

Setting goal 10 000 27.268

Setting goal 100 000 252.440

Reading goal 10 000 28.451

Reading goal 100 000 247.175

Removing �les 10 000 8.123

Removing �les 100 000 126.135

Table 6.4: Metadata operations with fsalloc enabled with single stream zram

Figure 6.1: Memory chart representing transition
from plain con�guration (no fsalloc) to 1 stream zram1

Figure 6.2: CPU chart representing transition
from plain con�guration (no fsalloc) to 1 stream zram

6.4.3. multiple stream zram

Table 6.3 shows the results after modifying zram con�guration to enable more streams to be
compressed simultaneously. Charts 6.3 and 6.4 present the moment of switching from single
to multiple stream con�guration. A straightforward observation is that number of streams
changed neither memory usage, nor CPU load. Master server start-up duration remained very
high.

1Empty space indicates the moment of changing con�guration, which requires restarting the master server.

46



Operation # of �les value (s)

Master server restart time N/A 1099.153

Creating �les 10 000 8.401

Creating �les 100 000 131.190

Setting extended attributes 10 000 8.225

Setting extended attributes 100 000 84.361

Changing owner 10 000 9.011

Changing owner 100 000 102.522

Setting goal 10 000 27.633

Setting goal 100 000 252.350

Reading goal 10 000 26.414

Reading goal 100 000 242.160

Removing �les 10 000 6.994

Removing �les 100 000 124.500

Table 6.5: Metadata operations with fsalloc enabled with 4 stream zram

Figure 6.3: Memory chart representing transition
from single stream to 4 stream zram2

Figure 6.4: CPU chart representing transition
from single stream to 4 stream zram

6.4.4. HDD

Table 6.6 contains results for fsalloc with HDD as back-end storage. It can be observed that
results for HDD, presumably the slowest of all chosen storage back ends, do not deviate from
neither zram nor standard con�gurations. As previously, a slight increase in CPU load (�gure
6.6) can be observed after restarting master server with fsalloc enabled.

2Empty space indicates the moment of changing con�guration, which requires restarting the master server.

47



Operation # of �les value (s)

Master server restart time N/A 1182.090

Creating �les 10 000 8.747

Creating �les 100 000 141.260

Setting extended attributes 10 000 8.110

Setting extended attributes 100 000 83.442

Changing owner 10 000 9.187

Changing owner 100 000 101.000

Setting goal 10 000 29.003

Setting goal 100 000 248.225

Reading goal 10 000 27.217

Reading goal 100 000 242.155

Removing �les 10 000 7.384

Removing �les 100 000 128.770

Table 6.6: Metadata operations with fsalloc enabled with HDD

Figure 6.5: Memory chart representing transition
from zram con�guration to HDD3

Figure 6.6: CPU chart representing transition
from zram con�guration to HDD

6.4.5. SSD

Table 6.7 contains results for fsalloc with SSD as back-end storage. Surprisingly, the most
costly storage back end does not seem to be worthy the money. Result sheet shows that using
a solid-state drive did not in�uence performance metadata operations compared to slower and
cheaper solutions, i.e. hard drives. As before, CPU overhead (�gure 6.8) is observable, but
not severely high.

3Empty space indicates the moment of changing con�guration, which requires restarting the master server.

48



Operation # of �les value (s)

Master server restart time N/A 1081.198

Creating �les 10 000 8.347

Creating �les 100 000 132.234

Setting extended attributes 10 000 8.356

Setting extended attributes 100 000 87.747

Changing owner 10 000 9.986

Changing owner 100 000 101.474

Setting goal 10 000 26.264

Setting goal 100 000 248.85

Reading goal 10 000 27.623

Reading goal 100 000 244.623

Removing �les 10 000 7.679

Removing �les 100 000 128.01

Table 6.7: Metadata operations with fsalloc enabled with SSD

Figure 6.7: Memory chart representing transition
from HDD con�guration to SSD4

Figure 6.8: CPU chart representing transition
from HDD con�guration to SSD5

6.5. Combined results

Figure 6.9 shows a combined plot of performance tests for each con�guration. It is clear that
elapsed time of performing a chosen metadata operation multiple times does not strongly
depend on any fsalloc con�guration. On the contrary, it seems that none of the values is
di�erent from their average by more than 5%.

4Empty space indicates the moment of changing con�guration, which requires restarting the master server.
5Peak value of nearly 25% (at 10:45) is an anomaly caused by external factors and should not be taken

into account in comparison of HDD and SSD con�gurations.

49



Cr
eat

ing
�le
s

Set
tin
g x

att
r

Ch
an
gin

g o
wn
er

Set
tin
g g

oal

Re
ad
ing

goa
ls

Re
mo
vin

g �
les

5

10

15

20

25

30

E
la
p
se
d
ti
m
e
fo
r
10
K
op
er
at
io
n
s
(s
)

no fsalloc
1-stream zram
4-stream zram

HDD
SSD

Cr
eat

ing
�le
s

Set
tin
g x

att
r

Ch
an
gin

g o
wn
er

Set
tin
g g

oal

Re
ad
ing

goa
ls

Re
mo
vin

g �
les

80

100

120

140

160

180

200

220

240

260

E
la
p
se
d
ti
m
e
fo
r
10
0K

op
er
at
io
n
s
(s
) no fsalloc

1-stream zram
4-stream zram

HDD
SSD

Figure 6.9: Combined times of metadata operations for all tested con�gurations.
Low diversity of values corresponding to di�erent con�gurations indicates that back end

storage is not a major performance factor for small metadata operations.

50



Compression streams 1
Number of reads 269
Number of writes 7910336
Memory used (total) 710250496 B (710 MiB)
Compressed data size 682413960 B (682 MiB)
Original data size 2062983168 B (2 GiB)
Reclaimed memory 66.9%

Table 6.8: Statistics for single-stream zram con�guration

Compression streams 4
Number of reads 447
Number of writes 4963835
Memory used (total) 710184960B (710 MiB)
Compressed data size 682405652B (682 MiB)
Original data size 2063036416B (2 GiB)
Reclaimed memory 66.9%

Table 6.9: Statistics for 4-stream zram con�guration

6.6. In-kernel compressed memory

Two con�gurations of zram block device, based on the maximal number of compression
streams, were prepared for testing. Tables 6.8, 6.9 present statistics provided by zrammodule.

Statistics were gathered during LizardFS' master server start. The booting procedures
involve reading all metadata from hard drive to memory. Thus, an imbalance between number
of reads and writes is noticeable.

An important conclusion is that �le system's metadata proved to be a great �t for the
chosen compression algorithm. All structures were packed to one third of their original size,
which is signi�cantly more than 50% � an average result for this class of algorithms. The
reason behind this could be that mentioned structures are similar in size and often contain
values close to one another in the sense of Hamming distance6. Consecutive index numbers
or pointers to the same structures are examples of such congruent values.

As shown, number of compression streams does not in�uence the compression ratio.
On the other hand, more compression streams led to slightly better performance results,
which can be observed in section 6.4.

6.7. Pro�ling

6.7.1. Results

Overriding allocation procedures carries the risk of creating a bottleneck in a programming
project. Fortunately, tools designed for detecting potential bottlenecks exist and they are
broadly known as pro�lers. Pro�ler chosen to be used in this experiment is perf [16], very
powerful, yet straightforward utility. It is o�cially supported by Linux kernel, which makes it
a perfect candidate for pro�ling a project based on system calls and interrupts. Listing 6.10

6Hamming distance between bit arrays A and B of length n is the number of positions on which A and B
have di�erent bit values, i.e.

∑n
1 [A[i] 6= B[i]].

51



contains a report of most frequent calls performed by LizardFS' master with fsalloc enabled.
Each row in �gure 6.10 consists of the following data:

� average percentage of processor time spent on a given call,

� name of the process responsible for the call,

� a bit informing if call originated from user-space ([.]) or kernel-space ([k]),

� source of the call's symbol (LizardFS symbol table, kernel or external library),

� call's symbol.

Supplementary pro�ling output is shown in �gure 6.11. It presents a map of calls that used
most of all resources. The graph clearly indicates, that mprotect call was directly responsible
for over 32% of CPU overhead. Indirectly, the culprit was LizardFS master server itself � all
calls whose identi�er starts with fs_ are part of metadata handling routines.

Figures 6.10 and 6.11 show only an abstract of pro�ling results. Full graphs and all perf [16]
outputs are available on the attached CD.

6.7.2. Conclusions

The most active call, which used approximately 10% of processor time was a cryptic
_M_insert_aux function. It is actually an internal method of vector and deque classes
from Standard Template Library for C++. A deque (double-ended queue) is used as a con-
tainer for cached memory regions in fsalloc � hence, the most costly operation turned out to
be updating the cache of active regions. It is clear that using a less complex data structure
would reduce the cost of this most expensive operation. A static circular bu�er implemented
with C-style array provides all the functionalities for �rst-in �rst-out cache, while much more
�exible double-ended queue generates more overhead than necessary for a simple use case.
However, despite being �rst on most expensive calls list, _M_insert_aux is not an actual
bottleneck. For reference, perf output of the same experiment performed on improved imple-
mentation of fsalloc with better suited data structures can be found in �gure A.5. The real,
less obvious bottleneck is described below.

Second place belongs to page fault handler, which demanded nearly 7% of processor time.
Restarting a server triggers loading all metadata from disk to RAM, which, in case of fsalloc,
causes a lot of cache invalidation. The next 3 costly operations relate to page faults as well
� each mapped memory area needs to be inserted into a red-black interval tree, pages need
to be zeroed and cleared from translation lookaside bu�ers, etc.

The fact that calls to BerkeleyDB interface occupy low positions in pro�ling output is
promising. It suggests that chosen database engine is indeed very e�cient. Restarting
LizardFS' master server is a write-oriented operation when it comes to memory, and yet
database back end proved to ful�ll its duties without creating a noticeable overhead.

52



# Inserting a memory region into fsalloc cache.

11.24% mfsmaster mfsmaster [.] _M_insert_aux

# Serving a low level page_fault operation.

6.77% mfsmaster [kernel.kallsyms] [k] page_fault

# Inserting mapped memory region into internal kernel structure.

5.74% mfsmaster [kernel.kallsyms] [k] anon_vma_interval_tree_ins

# Overhead generated by perf.

3.06% mfsmaster [kernel.kallsyms] [k] perf_event_aux_ctx

# Zeroing the memory of anonymously mapped page (optimized ).

2.62% mfsmaster [kernel.kallsyms] [k] clear_page_c_e

# Invalidating translation lookaside buffers.

2.56% mfsmaster [kernel.kallsyms] [k] flush_tlb_mm_range

# Copying memory.

2.46% mfsmaster libc -2.19. so [.] __memcpy_sse2_unaligned

# Locating memory area containing given address (segfault handling ).

2.32% mfsmaster [kernel.kallsyms] [k] find_vma

# Expanding the size of fsalloc cache.

1.93% mfsmaster mfsmaster [.] _M_default_append

# Adjusting memory area size and underneath tree structure.

1.90% mfsmaster [kernel.kallsyms] [k] vma_adjust

# Result of mprotect syscall.

1.75% mfsmaster [kernel.kallsyms] [k] change_protection

# Slab allocation.

1.59% mfsmaster [kernel.kallsyms] [k] kmem_cache_alloc

# Overhead for mutual exclusion.

1.50% mfsmaster [kernel.kallsyms] [k] _raw_spin_lock

# Unmapping a memory region.

1.29% mfsmaster [kernel.kallsyms] [k] unmap_single_vma

# Overhead created by BerkeleyDB.

1.29% mfsmaster libdb -5.3.so [.]

Figure 6.10: Pro�ling results

An unpleasant conclusion is that for structures that appear in millions, per-object granular-
ity creates a bottleneck in fsalloc library when all (or nearly all) objects need to be accessed.
When cache is systematically invalidated with new entries, overhead created by continuous
page faults start to dominate processor usage. This is evidenced by the fact that restarting
master server with fsalloc enabled took nearly 20 minutes compared to 1 minute with fsalloc-
free con�guration. Results produced by perf 6.10 support this argument as well � processor
was heavily occupied with context switching and page-level memory management.

On the other hand, if memory-wide operations are sparse (e.g. occur once a week), then it
is possible that such increased processing time is acceptable. When locality of accessed regions
is usually high, then cache meets its obligations and additional cycles spent on handling page
faults are not perceptible for users.

Results presented in section 6.4 indicate, that master server restart puts a lot of pressure on
fsalloc, which considerably extends the period of time needed for the action to �nish. These

53



results are backed by the output of pro�ling � processor was forced to spend a lot of time
processing page faults and revalidating heavily loaded cache.

One potential optimization idea arises from pro�ling results � moving the cache querying
logic to kernel space would eliminate the need to switch modes so frequently. If active memory
regions were kept in the kernel, only cache misses would need to be served by user space, where
the Berkeley database interface is available. Cache hits could be served entirely during page
fault handling. While having no noticeable impact on memory-wide operations like server
restart (because they generate a lot of cache misses), casual operations with high memory
locality would most likely save CPU cycles on unexecuted mode switches.

54



# mprotect

32.71% 0.54% mfsmaster libc -2.19. so

[.] __GI___mprotect

|

--- __GI___mprotect

|

|--98.22%-- 0x2

|

|--1.04%-- handler(int , siginfo_t*, void*)

| __restore_rt

| |-23.94%-- fs_loadedge(_IO_FILE*, int)

| | fs_loadedges(_IO_FILE*, int)

| | fs_load(_IO_FILE*, int , unsigned char)

| | fs_loadall(std:: string const&, int)

| | fs_loadall ()

| | fs_init(bool)

| | initialize(run_tab *)

| | main

| | __libc_start_main

| |

| |-13.47%-- fs_loadall(std:: string const&, int)

| | fs_loadall ()

| | fs_init(bool)

| | initialize(run_tab *)

| | main

| | __libc_start_main

| |

| |-9.18%-- fs_load(_IO_FILE*, int , unsigned char)

| | fs_loadall(std:: string const&, int)

| | fs_loadall ()

| | fs_init(bool)

| | initialize(run_tab *)

| | main

| | __libc_start_main

Figure 6.11: Pro�ling results � usage graph

55





Chapter 7

Conclusions

Implementing fsalloc and measuring its performance on a real life �le system cluster resulted
in many valuable lessons learned. Some of assumptions have proven correct, other, unfor-
tunately, wrong. Nonetheless, a whole study certainly showed that solid-state drives and
memory compression are very useful in the �eld of RAM usage optimizations. Test results
have shown that memory reclaimed via using disks or compression did not cause performance
drops in several cases (e.g. moderately small, local operations). Thanks to re�ections found in
SSDAlloc-related documents [1, 2, 3], a simple user-space memory management could be im-
plemented and tested. Di�erences between using HDD, SSD and compression as a writeback
target could be examined and compared to one another.

7.1. Evaluation

Test results revealed various strong and weak points of fsalloc library. As a reminder, presented
solution was rated in terms of performance and programming ease.

Performance of fsalloc proved to be acceptable for performing minor metadata operations
on LizardFS cluster, but installation-wide actions (e.g. master server restart) triggered a clear
bottleneck � fsalloc overhead was responsible for causing the operation to be orders of magni-
tude slower than with native allocation routines. It should be noted, however, that restarting
a master server is a maintenance operation � it is executed in exceptional circumstances only
(server failure, software upgrade). As such, it might be acceptable to reduce memory usage
at the expense of slowing down operations which happen very rarely.

Hopefully, root causes of mentioned bottleneck were identi�ed. First of all, fsalloc treats
each stored object separately. If fetching each object potentially requires performing a system
call (mprotect) and handling a signal (SIGSEGV), and there are millions of objects to serve
at the same time, accumulated overhead is very high, even though a single operation needs
microseconds to succeed. Two natural solutions come to mind:

1. implementing memory management in kernel-space instead of user-space decreases the
amount of required mode switches,

2. batching similar objects decreases granularity � which is the major cause of high over-
head for installation-wide metadata operations.

Both above methods have disadvantages. Implementing memory management as a kernel
module reduces portability and forces users to either recompile their kernel or use precompiled

57



uno�cial kernel build before using alternative allocation, which rules out programming ease �
the second important trait of fsalloc. Batching, in turn, requires more thinking and precision
when it comes to integrating fsalloc with other projects. Forcing users to provide their own,
thoughtful heuristics signi�cantly reduces programming ease as well.

Another minor improvement would be to port fsalloc to C and use as simple data structures
as possible. Even if allocation/deallocation is to remain a bottleneck for installation-wide
operations, it should de�nitely be minimized.

Programming ease was achieved without a doubt. Simple user-space memory manage-
ment created on the basis of SSDAlloc [1, 2, 3] and generic C++ interface makes fsalloc
highly integrable. As shown in chapter 5, overriding native allocation procedures with the
ones provided by fsalloc was a minor technical issue � neither deep knowledge of LizardFS
nor exceptional programming skills were required to complete the task.

7.2. Perspectives

Performance tests showed that examined version of fsalloc was constrained by two factors:
overly complex data structures and frequent memory-related system calls. Natural continu-
ation of fsalloc project should consider dealing with both issues. The �rst, less serious one
is already dealt with. Second iteration of fsalloc implementation (available on the attached
CD) replaced misused standard data structures with their simpli�ed versions:
deque → array based ring bu�er, unordered_map → array based hashmap.
The real bottleneck is now clearly exposed (see �gure A.5). Taking this into account, the
actual goal should be to research and implement heuristics of bundling and batching multiple
requests to avoid the overhead caused by frequent system calls, namely mmap.

7.3. Epilogue

Implementing an alternative allocation library and testing it on real-life installation of LizardFS
was a very educational experience. With the help of performance tests and pro�ling, bottle-
necks and false assumptions were detected and veri�ed. Hopefully, this research will be useful
for people responsible for designing memory management with particular attention to saving
space.

Implemented fsalloc library is published under open-source compliant license and available
at https://github.com/psarna/fsalloc and on the attached CD.

58

https://github.com/psarna/fsalloc


Appendix A

LizardFS graphs

This appendix contains visualizations of LizardFS cluster mentioned in chapter 1 and extended
performance results related to chapter 6.

Figure A.1: LizardFS overview
Source: workshop materials of Skytechnology Sp. z o.o.

59



Figure A.2: Read �ow of LizardFS
Source: workshop materials of Skytechnology Sp. z o.o.

60



Figure A.3: Write �ow of LizardFS
Source: workshop materials of Skytechnology Sp. z o.o.

61



__libc_start_main
0.0 (0.0%)

of 241996.1 (100.0%)

main
0.0 (0.0%)

of 241996.0 (100.0%)

241996.0

_start
0.0 (0.0%)

of 241996.1 (100.0%)

241996.1

initialize
(inline)

0.0 (0.0%)
of 241990.8 (100.0%)

241990.8

initialize
0.0 (0.0%)

of 241990.8 (100.0%)

fs_init
0.0 (0.0%)

of 241990.7 (100.0%)

241990.7

241990.8

fs_loadall@485b20
0.0 (0.0%)

of 241988.3 (100.0%)

241988.3

fs_loadall@4903c0
0.0 (0.0%)

of 236475.3 (97.7%)

236475.3

fs_strinit
4932.0 (2.0%)

of 4936.9 (2.0%)

4936.9

chunk_strinit
0.0 (0.0%)

of 576.0 (0.2%)

576.0

fs_load
0.0 (0.0%)

of 236475.3 (97.7%)

236475.3

fs_loadnodes
(inline)

0.0 (0.0%)
of 125040.9 (51.7%)

125040.9

fs_loadedges
(inline)

0.0 (0.0%)
of 78109.6 (32.3%)

78109.6

chunk_load
0.0 (0.0%)

of 33320.5 (13.8%)

33320.5

fs_loadnode
9068.8 (3.7%)

of 125040.9 (51.7%)

_ZN6fsnodeC4Eh
(inline)

115963.5 (47.9%)

115963.5

125040.9

fs_loadedge
9438.1 (3.9%)

of 78109.6 (32.3%)

get16bit
(inline)

68671.5 (28.4%)

68671.5

78109.6

chunk_new
0.0 (0.0%)

of 33320.5 (13.8%)

33320.5

chunk_malloc
(inline)

33320.5 (13.8%)

33320.5

ChunksMetadata
(inline)

576.0 (0.2%)

576.0

Figure A.4: Heap pro�ling results

62



8.89% [kernel] [k] anon_vma_interval_tree_insert

5.09% [kernel] [k] find_vma

4.47% [kernel] [k] page_fault

3.66% [kernel] [k] anon_vma_interval_tree_remove

3.60% [kernel] [k] copy_user_enhanced_fast_string

2.40% mfsmaster [.] chunk_checksum(chunk const*)

2.27% [kernel] [k] vma_adjust

2.26% mfsmaster [.] ChunkGoalCounters :: fileCount () const

1.96% mfsmaster [.] fsedges_checksum(fsedge const*)

1.66% [kernel] [k] unmap_single_vma

1.53% [kernel] [k] clear_page_c_e

1.49% mfsmaster [.] handler(int , siginfo_t*, void*)

1.46% [kernel] [k] vma_compute_subtree_gap

1.42% [kernel] [k] perf_event_aux_ctx

1.42% libc -2.19. so [.] __memcpy_sse2_unaligned

1.39% [kernel] [k] flush_tlb_mm_range

1.35% libdb -5.3.so [.] __memp_alloc

1.32% [kernel] [k] vma_merge

1.17% [kernel] [k] __rb_insert_augmented

1.12% [kernel] [k] kmem_cache_alloc

1.12% [kernel] [k] find_get_entry

1.10% [kernel] [k] __rb_erase_color

0.93% [kernel] [k] change_protection

0.91% [kernel] [k] kmem_cache_free

0.90% [kernel] [k] up_write

0.88% [kernel] [k] __mem_cgroup_uncharge_common

0.82% [kernel] [k] perf_event_aux

0.81% [kernel] [k] save_xstate_sig

0.77% [kernel] [k] _raw_spin_lock

0.77% [kernel] [k] down_write

0.74% [kernel] [k] mprotect_fixup

0.73% [kernel] [k] mem_cgroup_charge_anon

0.73% [kernel] [k] vmacache_find

0.69% [kernel] [k] zap_page_range

0.69% [kernel] [k] vma_rb_erase

0.69% libdb -5.3.so [.] __memp_fget

0.66% [kernel] [k] get_page_from_freelist

0.65% [kernel] [k] system_call

0.62% [kernel] [k] release_pages

0.61% [kernel] [k] anon_vma_clone

0.59% [kernel] [k] _raw_spin_lock_irqsave

0.57% [kernel] [k] system_call_after_swapgs

0.53% [kernel] [k] perf_event_mmap

0.48% [kernel] [k] __restore_xstate_sig

Figure A.5: Perf results of master server running with new implementation of fsalloc based on
better suited data structures: circular bu�er and hash table

63





Appendix B

Contents of the attached CD

� /thesis � electronic version of this thesis

� /fsalloc

� /fsalloc/LICENSE � full text of fsalloc's license

� /fsalloc/src � source code of fsalloc library

� /results

� /results/performance � performance tests results

� /results/pro�ling � pro�ling results

65





Bibliography

[1] Badam, Anirudh: Bridging the Memory-Storage Gap, Princeton University, 2012

[2] Badam, Anirudh: Easing the Hybrid RAM/SSD Memory Management with SSDAlloc,
Princeton University, 2010

[3] Badam, Anirudh and Pai, Vivek S.: SSDAlloc: Hybrid SSD/RAM Memory Management
Made Easy, Princeton University, 2011

[4] Bar, Moshe: The Linux Signals Handling Model, Linux Journal, 2000

[5] Beltran, Vicenç and Torres, Jordi and Ayguadé, Eduard: Improving Disk Bandwidth-
bound Applications Through Main Memory Compression, Dealing with Applications,
systems and architecture, 2007

[6] Berkeley DB Documentation - Oracle, http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/documentation/index.html

[7] Boost Library documentation, http://www.boost.org/doc/libs/

[8] CMake project, https://cmake.org/

[9] Google perf tools, http://goog-perftools.sourceforge.net/

[10] Hu, Jian and Jiang, Hong and Manden, Prakash: Understanding Performance Anomalies
of SSDs and Their Impact in Enterprise Application Environment, ACM SIGMETRICS
Performance Evaluation Review, 2012

[11] jemalloc documentation, http://www.canonware.com/jemalloc/

[12] Linux kernel documentation, Compressed RAM based block devices,
https://www.kernel.org/doc/Documentation/blockdev/zram.txt

[13] LizardFS documentation, https://lizardfs.com/documentation/

[14] Love, Robert: Linux Kernel Development, Pearson Education Inc, 2010

[15] Magenheimer, Dan: In-kernel memory compression, Article for lwn.net, April 2013

[16] Perf Wiki, https://perf.wiki.kernel.org/

[17] Quick Benchmark: Gzip vs Bzip2 vs LZMA vs XZ vs LZ4 vs LZO,
http://catchchallenger.�rst-world.info/wiki/
Quick_Benchmark:_Gzip_vs_Bzip2_vs_LZMA_vs_XZ_vs_LZ4_vs_LZO

67



[18] Samih, Ahmad and Wang, Ren and Maciocco, Christian and Tai, Tsung-Yuan and Duan,
Ronghui and Duan, Jiangang and Solihin, Yan: Evaluating Dynamics and Bottlenecks
of Memory Collaboration in Cluster Systems, 2012

[19] TCMalloc documentation, http://goog-perftools.sourceforge.net/doc/tcmalloc.html

[20] Uni�ed Format, di� utils,
http://www.gnu.org/s/di�utils/manual/html_node/Uni�ed-Format.html

[21] UserBenchmark, http://hdd.userbenchmark.com/, http://ssd.userbenchmark.com/

[22] Yong, Zhang: Kernel Korner: Meddling with Memory, Linux Journal, January 2001

68


	Introduction
	Background
	Introduction to LizardFS
	Architecture
	Resource consumption
	Memory of the master server
	Existent memory optimizations


	Inspiration
	Introduction to SSDAlloc
	Motivation
	Keywords
	Architecture

	Conclusions

	Design and implementation
	Design
	Choice of programming language
	Used libraries and portability
	Linux-specific headers
	BerkeleyDB

	User-space memory management
	Details
	Performance of signal-based management

	Implementation details
	Application layer
	Runtime layer
	Storage layer


	Choice of storage
	HDD
	Introduction
	Access time
	Prices
	Benchmarks

	SSD
	Introduction
	Access time
	Prices
	Benchmarks

	In-kernel compression
	Introduction
	Implementations
	Usage examples
	Compression algorithms
	Benchmarks

	Comparison
	Price-oriented choice
	Performance-oriented choice
	Summary


	Integration with LizardFS
	Build configuration
	Code changes
	Summary

	Test results
	Parameters
	Configurations
	Scope
	Result sheets
	without fsalloc
	single stream zram
	multiple stream zram
	HDD
	SSD

	Combined results
	In-kernel compressed memory
	Profiling
	Results
	Conclusions


	Conclusions
	Evaluation
	Perspectives
	Epilogue

	LizardFS graphs
	Contents of the attached CD
	Bibliography

